Large Deviation Principles for Weakly Interacting Fermions

N. J. B. Aza
Departamento de Física Matemática, Universidade de São Paulo

Joint work with J.-B. Bru, W. de Siqueira Pedra and L. C. P. A. M.
Müssnich
October 08, 2016

Large Deviation Theory and Quantum Lattice Systems

Large Deviation Theory and Quantum Lattice Systems

Lebowitz-Lenci-Spohn '00, Gallavotti-Lebowitz-Mastropietro '02, Netočny-Redig '04, Lenci-Rey-Bellet '05, Hiai-Mosonyi-Ogawa
'07, Ogata '10, Ogata-Rey-Bellet '11, de Roeck-Maes-Netočny-Schütz '15

- Observe that for ρ a state on the C^{*}-algebra \mathfrak{A} and $A \in \mathfrak{A}$ a selfadjoint element, there is a unique probability measure $\mu_{\rho, A}$ on \mathbb{R} such that $\mu_{\rho, A}(\operatorname{spec}(A))=1$ and, for all continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$,

$$
\rho(f(A))=\int_{\mathbb{R}} f(x) \mu_{\rho, A}(\mathrm{~d} x)
$$

- $\mu_{A} \doteq \mu_{\rho, A}$ is the measure associated to ρ and A. For a sequence of selfadjoints $\left\{A_{l}\right\}_{l \in \mathbb{R}^{+}}$of \mathfrak{A}, and a state ρ, we say that these satisfy a Large Deviation Principle (LDP), with scale $\left|\Lambda_{l}\right|$, if, for all Borel measurable $\Gamma \subset \mathbb{R}$,

$$
-\inf _{x \in \Gamma} \mathscr{I}(x) \leq \liminf _{l \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \mu_{A_{l}}(\Gamma) \leq \limsup _{l \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \mu_{A_{l}}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} \mathscr{I}(x)
$$

Large Deviation Theory and Quantum Lattice Systems

- To find an LDP we desire to use the Gärtner-Ellis Theorem (GET) to $\mu_{A_{I}}$, through the scaled cumulant generating function

$$
\bar{f}(s)=\lim _{\mid \rightarrow \infty} \frac{1}{\left|\Lambda_{\Lambda}\right|} \log \rho\left(\mathrm{e}^{s\left|\Lambda_{l}\right| A_{l}}\right), \quad s \in \mathbb{R} .
$$

- If \bar{f} exists and is differentiable, then the good rate function \mathscr{I} is the Legendre-Fenchel transform of \bar{f}.
- In the case of lattice fermions we represent \bar{f} as a Berezin-integral and analyse it using "tree expansions". The scale $\left|\Lambda_{\Lambda}\right|$ will be then the volume of the boxes Λ_{l} :

$$
\Lambda_{l} \doteq\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}^{d}:\left|x_{1}\right|, \ldots,\left|x_{d}\right| \leq I\right\} \in \mathscr{P}_{\mathrm{f}}\left(\mathbb{Z}^{d}\right) .
$$

- For lattice fermions, \mathfrak{A} is the CAR C^{*}-algebra generated by the identity $\mathbb{1}$ and $\left\{a_{\mathfrak{s}, \times}\right\}_{\mathfrak{s}, \times \in \mathcal{R}} . \mathfrak{L} \doteq \mathrm{S} \times \mathbb{Z}^{d}$ where S is the set of Spins of single fermions. However, our proofs do not depend on the particular choice of S.

Large Deviation Theory and Quantum Lattice Systems

- CAR:

$$
\left\{a_{x}, a_{x^{\prime}}\right\}=0, \quad\left\{a_{x}, a_{x^{\prime}}^{*}\right\}=\delta_{x_{x}, x^{\prime}} \mathbb{\mathbb { R }} .
$$

- $\mathfrak{A}_{\wedge} \subset \mathfrak{A}$ is the C^{*}-subalgebra generated $\mathbb{1}$ and $\left\{a_{\chi}\right\}_{x \in \Lambda}$.
- An interaction Φ is a map $\mathscr{P}_{\mathrm{f}}\left(\mathbb{Z}^{d}\right) \rightarrow \mathfrak{A}$ s.t. $\Phi_{\Lambda}=\Phi_{\Lambda}^{*} \in \mathfrak{A}^{+} \cap \mathfrak{A}_{\Lambda}$ and $\Phi_{\emptyset}=0$.
- Φ is of finite range if for $\Lambda \in \mathscr{P}_{\mathrm{f}}\left(\mathbb{Z}^{d}\right)$ and some $R>0, \operatorname{diam} \Lambda>R$ $\rightarrow \Phi_{\Lambda}=0$.
- For any interaction Φ, we define the space average $K_{l}^{\phi} \in \mathfrak{A}_{\Lambda}$, by

$$
K_{l}^{\phi} \doteq \frac{1}{\left|\Lambda_{l}\right|} \sum_{\Lambda \in \mathscr{F}_{f}\left(\mathbb{Z}^{d}\right), \Lambda \in \Lambda_{l}} \Phi_{\Lambda} .
$$

Main Result

Note that finite range interactions define equilibrium (KMS) states of \mathfrak{A}.

Theorem (A., Bru, Müssnich, Pedra)

Let $\beta>0$ and consider any finite range translation invariant interaction $\psi=\Psi_{0}+\Psi_{1}$. If the interparticle component Ψ_{1} (Ψ_{0} is the free part) is small enough (depending on β), then any invariant equilibrium state ρ of Ψ and the sequence of averages K_{1}^{ϕ} of ANY translation invariant interaction Φ, have an LDP and $s \mapsto \bar{f}(s)$ is analytic at small s.

Main Result

Remarks

1 Note that, in contrast to previous results, we do not impose β to be small or Φ (defining K_{l}^{Φ}) to be an one-site interaction.

2 Uniqueness of KMS states is not used.
3 Use C*-algebras formalism and Grassmann algebras.
4 Determinant bounds or study of Large Determinants.
5 Direct representation of \bar{f} by Berezin-integrals. In particular we do not use the correlation functions.
6 Beyond the LDP, the analyticity of $\bar{f}(\cdot)$ together with the Bryc Theorem implies the Central Limit Theorem for the system.

Main Result

Sketch of the proof.

1

$$
\bar{f}(s)=\lim _{l \rightarrow \infty} \lim _{I^{\prime} \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}}\right)}
$$

Main Result

Sketch of the proof.
1

$$
\bar{f}(s)=\lim _{l \rightarrow \infty} \lim _{I^{\prime} \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}}\right)}
$$

2 From a Feynmann-Kac-like formula for traces, we write the KMS state as a Berezin-integral

$$
\frac{\operatorname{tr}_{\wedge^{*} \mathfrak{H}}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}_{\wedge^{*} \mathfrak{H}}\left(\mathrm{e}^{-\beta H_{\prime^{\prime}}^{(0)}}\right)}=\lim _{n \rightarrow \infty} \int \mathrm{~d} \mu_{c_{l}^{(n)}}\left(\mathfrak{H}^{(n)}\right) \mathrm{e}^{\mathscr{W}_{l, \prime^{\prime}}^{(n)}}
$$

Main Result

Sketch of the proof.

1

$$
\bar{f}(s)=\lim _{l \rightarrow \infty} \lim _{I^{\prime} \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}}\right)}
$$

2 From a Feynmann-Kac-like formula for traces, we write the KMS state as a Berezin-integral

$$
\frac{\operatorname{tr}_{\wedge^{*} \mathfrak{H}}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}_{\wedge^{*} \mathfrak{H}}\left(\mathrm{e}^{-\beta H_{l /}^{(0)}}\right)}=\lim _{n \rightarrow \infty} \int \mathrm{~d} \mu_{c_{/ \prime}^{(n)}}\left(\mathfrak{H}^{(n)}\right) \mathrm{e}^{\mathscr{W}_{l, I^{\prime}}^{(n)}}
$$

3 The covariance $C_{1 /}^{(n)}$ satisfies:

$$
\left|\operatorname{det}\left[\left(\varphi_{a}^{*}\right)^{\left(k_{a}\right)}\left(C_{l^{\prime}}^{(n)}\left(\varphi_{b}^{\left(k_{b}\right)}\right)\right)\right]_{a, b=1}^{m}\right| \leq\left(\prod_{a=1}^{m}\left\|\varphi_{a}^{*}\right\|_{\mathfrak{H}^{*}}\right)\left(\prod_{b=1}^{m}\left\|\varphi_{b}\right\|_{\mathfrak{H}}\right)
$$

Main Result

Sketch of the proof.

1

$$
\bar{f}(s)=\lim _{l \rightarrow \infty} \lim _{I^{\prime} \rightarrow \infty} \frac{1}{\left|\Lambda_{l}\right|} \log \frac{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}} \mathrm{e}^{s K_{l}}\right)}{\operatorname{tr}\left(\mathrm{e}^{-\beta H_{l^{\prime}}}\right)}
$$

2 From a Feynmann-Kac-like formula for traces, we write the KMS state as a Berezin-integral

3 The covariance $C_{\mu^{\prime}}^{(n)}$ satisfies:

$$
\left|\operatorname{det}\left[\left(\varphi_{a}^{*}\right)^{\left(k_{a}\right)}\left(C_{l^{\prime}}^{(n)}\left(\varphi_{b}^{\left(k_{b}\right)}\right)\right)\right]_{a, b=1}^{m}\right| \leq\left(\prod_{a=1}^{m}\left\|\varphi_{a}^{*}\right\|_{\mathfrak{H}^{*}}\right)\left(\prod_{b=1}^{m}\left\|\varphi_{b}\right\|_{\mathfrak{H}}\right) .
$$

Use Brydges-Kennedy Tree expansions (BKTE) to verify GET. BKTE are solution of an infinite hierarchy of coupled ODEs. . .

Perspectives and Questions

Perspectives:

1 Quantum Hypothesys Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega_{\Lambda}^{\beta} \in \mathfrak{A}_{\Lambda}$ and translation invariant state ω_{Λ}.

2 Related problems to our approach.
3 ...

Perspectives and Questions

Perspectives:

1 Quantum Hypothesys Testing? Open problems, e.g., study thermodynamic limit of the relative entropy between equilibrium state $\omega_{\Lambda}^{\beta} \in \mathfrak{A}_{\Lambda}$ and translation invariant state ω_{Λ}.

2 Related problems to our approach.
3 ...

Open Questions:

1 LDP for time correlation (transport coefficients)?
2 Systems in presence of disorder?
3 What about LDP for commutators of averages $i\left[K^{\Phi_{1}}, K^{\Phi_{2}}\right]$ in place of simple averages K^{Φ} ? (Also related to transport)

4

Thank you!

Supporting facts

1 For any invertible operator $C \in \mathscr{B}(\mathfrak{H})$ and $\xi \in \wedge^{*}(\mathfrak{H} \oplus \overline{\mathfrak{H}})$, the Gaussian Grassmann integral: $\int \mathrm{d} \mu_{C}(\mathfrak{H}): \wedge^{*}(\mathfrak{H} \oplus \overline{\mathfrak{H}}) \rightarrow \mathbb{C} \mathbf{1}$ with covariance C, is defined by

$$
\int \mathrm{d} \mu_{C}(\mathfrak{H}) \xi \doteq \operatorname{det}(C) \int \mathrm{d}(\mathfrak{H}) \mathrm{e}^{\left\langle\mathfrak{H}, C^{-1} \mathfrak{H}\right\rangle} \wedge \xi
$$

$2 \int \mathrm{~d} \mu_{C}(\mathfrak{H}) \mathbf{1}=1$ and for any $m, n \in \mathbb{N}$ and all $\bar{\varphi}_{1}, \ldots, \bar{\varphi}_{m} \in \overline{\mathfrak{H}}$, $\varphi_{1}, \ldots, \varphi_{n} \in \mathfrak{H}$,

$$
\int \mathrm{d} \mu_{C}(\mathfrak{H}) \bar{\varphi}_{1} \cdots \bar{\varphi}_{m} \varphi_{1} \cdots \varphi_{m}=\operatorname{det}\left[\bar{\varphi}_{k}\left(C \varphi_{l}\right)\right]_{k, l=1}^{m} \delta_{m, n \mathbf{1}}
$$

3 For all $N \in \mathbb{N}$ and $A_{0}, \ldots, A_{N-1} \in \mathscr{B}\left(\wedge^{*} \mathfrak{H}\right)$,

$$
\operatorname{Tr}_{\wedge^{*} \mathfrak{H}}\left(A_{0} \cdots A_{N-1}\right) \mathbf{1}=\left(\prod_{k=0}^{N-1} \int \mathrm{~d}\left(\mathfrak{H}^{(k)}\right)\right) \mathrm{E}_{\mathfrak{H}}^{(N)}\left(\prod_{k=0}^{N-1} \varkappa^{(k)}\left(A_{k}\right)\right)
$$

$\varkappa^{(k)} \doteq \varkappa_{(0,0)}^{(k, k)} \circ \varkappa: \mathscr{B}\left(\wedge^{*} \mathfrak{H}\right) \rightarrow \wedge^{*}\left(\mathfrak{H}^{(k)} \oplus \overline{\mathfrak{H}}^{(k)}\right)$ and for
$i, j, k, l \in\{0, \ldots, N\}, \varkappa_{(i, j)}^{(k, l)}: \wedge^{*}\left(\mathfrak{H}^{(i)} \oplus \overline{\mathfrak{H}}^{(j)}\right) \rightarrow \wedge^{*}\left(\mathfrak{H}^{(k)} \oplus \overline{\mathfrak{H}}^{(l)}\right)$.

